Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Commun Med (Lond) ; 4(1): 42, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472334

RESUMO

BACKGROUND: Hyperthyroidism is frequently under-recognized and leads to heart failure and mortality. Timely identification of high-risk patients is a prerequisite to effective antithyroid therapy. Since the heart is very sensitive to hyperthyroidism and its electrical signature can be demonstrated by electrocardiography, we developed an artificial intelligence model to detect hyperthyroidism by electrocardiography and examined its potential for outcome prediction. METHODS: The deep learning model was trained using a large dataset of 47,245 electrocardiograms from 33,246 patients at an academic medical center. Patients were included if electrocardiograms and measurements of serum thyroid-stimulating hormone were available that had been obtained within a three day period. Serum thyroid-stimulating hormone and free thyroxine were used to define overt and subclinical hyperthyroidism. We tested the model internally using 14,420 patients and externally using two additional test sets comprising 11,498 and 596 patients, respectively. RESULTS: The performance of the deep learning model achieves areas under the receiver operating characteristic curves (AUCs) of 0.725-0.761 for hyperthyroidism detection, AUCs of 0.867-0.876 for overt hyperthyroidism, and AUC of 0.631-0.701 for subclinical hyperthyroidism, superior to a traditional features-based machine learning model. Patients identified as hyperthyroidism-positive by the deep learning model have a significantly higher risk (1.97-2.94 fold) of all-cause mortality and new-onset heart failure compared to hyperthyroidism-negative patients. This cardiovascular disease stratification is particularly pronounced in subclinical hyperthyroidism, surpassing that observed in overt hyperthyroidism. CONCLUSIONS: An innovative algorithm effectively identifies overt and subclinical hyperthyroidism and contributes to cardiovascular risk assessment.


Hyperthyroidism occurs when the thyroid gland produces too much hormone and can cause various symptoms including faster heartbeat, weight loss, and nervousness. Diagnosis is often missed, which can lead to heart problems and even death. Measurements of the heart's electrical activity can be obtained using Electrocardiograms (ECGs). We made a computational model that can detect hyperthyroidism from ECGs. Our model was better able to identify people with hyperthyroidism than currently available methods, especially the more severe forms of the condition. If future work demonstrates our model is safe and accurate, it could potentially be used to detect hyperthyroidism sooner, enabling faster treatment and improved health of people with hyperthyroidism.

2.
J Med Syst ; 48(1): 12, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217829

RESUMO

A deep learning model was developed to identify osteoporosis from chest X-ray (CXR) features with high accuracy in internal and external validation. It has significant prognostic implications, identifying individuals at higher risk of all-cause mortality. This Artificial Intelligence (AI)-enabled CXR strategy may function as an early detection screening tool for osteoporosis. The aim of this study was to develop a deep learning model (DLM) to identify osteoporosis via CXR features and investigate the performance and clinical implications. This study collected 48,353 CXRs with the corresponding T score according to Dual energy X-ray Absorptiometry (DXA) from the academic medical center. Among these, 35,633 CXRs were used to identify CXR- Osteoporosis (CXR-OP). Another 12,720 CXRs were used to validate the performance, which was evaluated by the area under the receiver operating characteristic curve (AUC). Furthermore, CXR-OP was tested to assess the long-term risks of mortality, which were evaluated by Kaplan‒Meier survival analysis and the Cox proportional hazards model. The DLM utilizing CXR achieved AUCs of 0.930 and 0.892 during internal and external validation, respectively. The group that underwent DXA with CXR-OP had a higher risk of all-cause mortality (hazard ratio [HR] 2.59, 95% CI: 1.83-3.67), and those classified as CXR-OP in the group without DXA also had higher all-cause mortality (HR: 1.67, 95% CI: 1.61-1.72) in the internal validation set. The external validation set produced similar results. Our DLM uses CXRs for early detection of osteoporosis, aiding physicians to identify those at risk. It has significant prognostic implications, improving life quality and reducing mortality. AI-enabled CXR strategy may serve as a screening tool.


Assuntos
Aprendizado Profundo , Osteoporose , Humanos , Inteligência Artificial , Raios X , Osteoporose/diagnóstico por imagem , Absorciometria de Fóton/métodos
3.
Acta Cardiol Sin ; 39(6): 913-928, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38022412

RESUMO

Background: The early diagnosis of pulmonary embolism (PE) remains a challenge. Electrocardiograms (ECGs) and D-dimer levels are used to screen potential cases. Objective: To develop a deep learning model (DLM) to detect PE using ECGs and investigate the clinical value of false detections in patients without PE. Methods: Among patients who visited the emergency department between 2011 and 2019, PE cases were identified through a review of medical records. Non-PE ECGs were collected from patients without a diagnostic code for PE. There were 113 PE and 51,456 non-PE ECGs in the training and validation sets for developing the DLM, respectively, and 27 PE and 13,105 non-PE cases in an independent testing set for performance validation. A human-machine competition was conducted from the testing set to compare the performance of the DLM with that of physicians. Receiver operating characteristic (ROC) curves, sensitivity, and specificity were used to determine the diagnostic value. Survival analysis was used to assess the prognosis of the patients without PE, stratified by DLM prediction. Results: The DLM was as effective as physicians in diagnosing PE, with 70.8% sensitivity and 69.7% specificity. The area under the ROC curve of DLM was 0.778 in the testing set and up to 0.9 with D-dimer and demographic data. The non-PE patients whose ECG was misclassified as PE by DLM had higher all-cause mortality [hazard ratio (HR) 2.13 (1.51-3.02)] and risk of non-cardiovascular hospitalization [HR 1.55 (1.42-1.68)] than those correctly classified. Conclusions: A DLM-enhanced ECG system may prompt PE recognition and provide prognostic outcomes in patients with false-positive predictions.

4.
Diagnostics (Basel) ; 13(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685262

RESUMO

BACKGROUND: The B-type natriuretic peptide (BNP) and N-terminal pro-brain natriuretic peptide (pBNP) are predictors of cardiovascular morbidity and mortality. Since the artificial intelligence (AI)-enabled electrocardiogram (ECG) system is widely used in the management of many cardiovascular diseases (CVDs), patients requiring intensive monitoring may benefit from an AI-ECG with BNP/pBNP predictions. This study aimed to develop an AI-ECG to predict BNP/pBNP and compare their values for future mortality. METHODS: The development, tuning, internal validation, and external validation sets included 47,709, 16,249, 4001, and 6042 ECGs, respectively. Deep learning models (DLMs) were trained using a development set for estimating ECG-based BNP/pBNP (ECG-BNP/ECG-pBNP), and the tuning set was used to guide the training process. The ECGs in internal and external validation sets belonging to nonrepeating patients were used to validate the DLMs. We also followed-up all-cause mortality to explore the prognostic value. RESULTS: The DLMs accurately distinguished mild (≥500 pg/mL) and severe (≥1000 pg/mL) an abnormal BNP/pBNP with AUCs of ≥0.85 in the internal and external validation sets, which provided sensitivities of 68.0-85.0% and specificities of 77.9-86.2%. In continuous predictions, the Pearson correlation coefficient between ECG-BNP and ECG-pBNP was 0.93, and they were both associated with similar ECG features, such as the T wave axis and correct QT interval. ECG-pBNP provided a higher all-cause mortality predictive value than ECG-BNP. CONCLUSIONS: The AI-ECG can accurately estimate BNP/pBNP and may be useful for monitoring the risk of CVDs. Moreover, ECG-pBNP may be a better indicator to manage the risk of future mortality.

5.
Clin J Pain ; 39(12): 686-694, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37732966

RESUMO

OBJECTIVES: Severe postoperative pain requiring opioid treatment has been reported in 20% to 40% of hemorrhoidectomy patients. Compared with morphine, nalbuphine offers better hemodynamic stability, a lower risk of respiratory depression, and a lower potential for addiction. Nalbuphine was developed from the intravenous form into an oral form (PHN131) to alleviate moderate-to-severe pain. MATERIALS AND METHODS: A randomized, double-blind, placebo-controlled, multiple-dose, parallel-design trial was conducted to evaluate the safety and efficacy of PHN131 in patients undergoing hemorrhoidectomy. Eligible patients were randomly assigned to receive either PHN131 soft capsules containing nalbuphine hydrochloride 60 mg or placebo capsules. Intramuscular diclofenac was the rescue analgesic. Pain was measured by the area under the curve of mean Visual Analog Scale pain intensity scores. RESULTS: Visual Analog Scale results in patients receiving PHN131 were significantly lower than placebo group scores through 48 hours postoperatively (149.2±75.52 vs. 179.6±65.97; P =0.0301). According to Brief Pain Inventory Short-Form scores, the impact of pain on quality of life was significantly smaller for the PHN131 group than for the placebo group. Time to the first use of diclofenac postoperatively was significantly longer in the PHN131 group than in the placebo group. The cumulative dosage of diclofenac in the PHN131 group was only around half of that in the placebo group ( P <0.0001). Drug-related adverse events were mild-to-moderate and resolved by the treatment end. No drug-related severe adverse events were observed. DISCUSSION: Our findings demonstrate that PHN131 is effective and well-tolerated in the treatment of moderate-to-severe post hemorrhoidectomy pain and may provide another option for patients to control their pain.


Assuntos
Hemorroidectomia , Nalbufina , Humanos , Nalbufina/efeitos adversos , Diclofenaco/uso terapêutico , Hemorroidectomia/efeitos adversos , Qualidade de Vida , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/etiologia , Analgésicos Opioides , Método Duplo-Cego
6.
J Med Syst ; 47(1): 81, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37523102

RESUMO

Emergency department (ED) triage scale determines the priority of patient care and foretells the prognosis. However, the information retrieved from the initial assessment is limited, hindering the risk identification accuracy of triage. Therefore, we sought to develop a 'dynamic' triage system as secondary screening, using artificial intelligence (AI) techniques to integrate information from initial assessment data and subsequent examinations. This retrospective cohort study included 134,112 ED visits with at least one electrocardiography (ECG) and chest X-ray (CXR) in a medical center from 2012 to 2022. Additionally, an independent community hospital provided 45,614 ED visits as an external validation set. We trained an eXtreme gradient boosting (XGB) model using initial assessment data to predict all-cause mortality in 7 days. Two deep learning models (DLMs) using ECG and CXR were trained to stratify mortality risks. The dynamic triage levels were based on output from the XGB-triage and DLMs from ECG and CXR. During the internal and external validation, the area under the receiver operating characteristic curve (AUC) of the XGB-triage model was >0.866; furthermore, the AUCs of DLMs using ECG and CXR were >0.862 and >0.886, respectively. The dynamic triage scale provided a higher C-index (0.914-0.920 vs. 0.827-0.843) than the original one and demonstrated better predictive ability for 5-year mortality, 30-day ED revisit, and 30-day discharge. The AI-based risk scale provides a more accurate and dynamic stratification of mortality risk in ED patients, particularly in identifying patients who tend to be overlooked due to atypical symptoms.


Assuntos
Inteligência Artificial , Serviço Hospitalar de Emergência , Humanos , Estudos Retrospectivos , Triagem/métodos , Eletrocardiografia , Medição de Risco
7.
Digit Health ; 9: 20552076231187247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37448781

RESUMO

Background: The electrocardiogram (ECG) may be the most popular test in the management of cardiovascular disease (CVD). Although wide applications of artificial intelligence (AI)-enabled ECG have been developed, an integrating indicator for CVD risk stratification was not investigated. Since mortality may be the most important global outcome, this study aimed to develop a survival deep learning model (DLM) to establish a critical ECG value and explore the associations with various CVD events. Methods: We trained a DLM with 451,950 12-lead resting ECGs obtained from 210,552 patients, for whom 23,592 events occurred. The internal validation set included 27,808 patients with one ECG for each patient. The external validations were performed in a community hospital with 33,047 patients and two transnational data sets with 233,647 and 1631 ECGs. We distinguished the cause of mortality and additionally investigated CVD-related outcomes, including new-onset acute myocardial infarction (AMI), stroke (STK), and heart failure (HF). Results: The DLM achieved C-indices of 0.858/0.836 in internal/external validation sets by using ECG over a 10-year period. The high-mortality-risk group identified by the proposed DLM presented a hazard ratio (HR) of 14.16 (95% confidence interval (CI): 11.33-17.70) compared to the low-risk group in the internal validation and presented a higher risk of cardiovascular (CV) mortality (HR: 18.50, 95% CI: 9.82-34.84), non-CV mortality (HR: 13.68, 95% CI: 10.76-17.38), AMI (HR: 4.01, 95% CI: 2.24-7.17), STK (HR: 2.15, 95% CI: 1.70-2.72), and HF (HR: 6.66, 95% CI: 4.54-9.77), which was consistent in an independent community hospital. The transnational validation also revealed HRs of 4.91 (95% CI: 2.63-9.16) and 2.29 (95% CI: 2.15-2.44) for all-cause mortality in the SaMi-Trop and Clinical Outcomes in Digital Electrocardiography 15% (CODE15) cohorts. Conclusions: The mortality risk by AI-enabled ECG may be applied in passive electronic-health-record-based CVD risk screening, which may identify more asymptomatic and unaware high-risk patients.

8.
Comput Methods Programs Biomed ; 231: 107359, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36738606

RESUMO

BACKGROUND AND OBJECTIVE: Deep learning models (DLMs) have been successfully applied in biomedicine primarily using supervised learning with large, annotated databases. However, scarce training resources limit the potential of DLMs for electrocardiogram (ECG) analysis. METHODS: We have developed a novel pre-training strategy for unsupervised identity identification with an area under the receiver operating characteristic curve (AUC) >0.98. Accordingly, a DLM pre-trained with identity identification can be applied to 70 patient characteristic predictions using transfer learning (TL). These ECG-based patient characteristics were then used for cardiovascular disease (CVD) risk prediction. The DLMs were trained using 507,729 ECGs from 222,473 patients and validated using two independent validation sets (n = 27,824/31,925). RESULTS: The DLMs using our method exhibited better performance than directly trained DLMs. Additionally, our DLM performed better than those of previous studies in terms of gender (AUC [internal/external] = 0.982/0.968), age (correlation = 0.886/0.892), low ejection fraction (AUC = 0.942/0.951), and critical markers not addressed previously, including high B-type natriuretic peptide (AUC = 0.921/0.899). Additionally, approximately 50% of the ECG-based characteristics provided significantly more prediction information for cardiovascular risk than real characteristics. CONCLUSIONS: This is the first study to use identity identification as a pre-training task for TL in ECG analysis. An extensive exploration of the relationship between ECG and 70 patient characteristics was conducted. Our DLM-enhanced ECG interpretation system extensively advanced ECG-related patient characteristic prediction and mortality risk management for cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Aprendizado Profundo , Humanos , Eletrocardiografia , Bases de Dados Factuais
9.
Eur Heart J Digit Health ; 4(1): 22-32, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36743876

RESUMO

Aims: Deep learning models (DLMs) have shown superiority in electrocardiogram (ECG) analysis and have been applied to diagnose dyskalaemias. However, no study has explored the performance of DLM-enabled ECG in continuous follow-up scenarios. Therefore, we proposed a dynamic revision of DLM-enabled ECG to use personal pre-annotated ECGs to enhance the accuracy in patients with multiple visits. Methods and results: We retrospectively collected 168 450 ECGs with corresponding serum potassium (K+) levels from 103 091 patients as development samples. In the internal/external validation sets, the numbers of ECGs with corresponding K+ were 37 246/47 604 from 13 555/20 058 patients. Our dynamic revision method showed better performance than the traditional direct prediction for diagnosing hypokalaemia [area under the receiver operating characteristic curve (AUC) = 0.730/0.720-0.788/0.778] and hyperkalaemia (AUC = 0.884/0.888-0.915/0.908) in patients with multiple visits. Conclusion: Our method has shown a distinguishable improvement in DLMs for diagnosing dyskalaemias in patients with multiple visits, and we also proved its application in ejection fraction prediction, which could further improve daily clinical practice.

10.
Digit Health ; 8: 20552076221143249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532114

RESUMO

Background: Artificial intelligence-enabled electrocardiogram has become a substitute tool for echocardiography in left ventricular ejection fraction estimation. However, the direct use of artificial intelligence-enabled electrocardiogram may be not trustable due to the uncertainty of the prediction. Objective: The study aimed to establish an artificial intelligence-enabled electrocardiogram with a degree of confidence to identify left ventricular dysfunction. Methods: The study collected 76,081 and 11,771 electrocardiograms from an academic medical center and a community hospital to establish and validate the deep learning model, respectively. The proposed deep learning model provided the point estimation of the actual ejection fraction and its standard deviation derived from the maximum probability density function of a normal distribution. The primary analysis focused on the accuracy of identifying patients with left ventricular dysfunction (ejection fraction ≤ 40%). Since the standard deviation was an uncertainty indicator in a normal distribution, we used it as a degree of confidence in the artificial intelligence-enabled electrocardiogram. We further explored the clinical application of estimated standard deviation and followed up on the new-onset left ventricular dysfunction in patients with initially normal ejection fraction. Results: The area under receiver operating characteristic curves (AUC) of detecting left ventricular dysfunction were 0.9549 and 0.9365 in internal and external validation sets. After excluding the cases with a lower degree of confidence, the artificial intelligence-enabled electrocardiogram performed better in the remaining cases in internal (AUC = 0.9759) and external (AUC = 0.9653) validation sets. For the application of future left ventricular dysfunction risk stratification in patients with initially normal ejection fraction, a 4.57-fold risk of future left ventricular dysfunction when the artificial intelligence-enabled electrocardiogram is positive in the internal validation set. The hazard ratio was increased to 8.67 after excluding the cases with a lower degree of confidence. This trend was also validated in the external validation set. Conclusion: The deep learning model with a degree of confidence can provide advanced improvements in identifying left ventricular dysfunction and serve as a decision support and management-guided screening tool for prognosis.

11.
Clin Chim Acta ; 536: 126-134, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36167147

RESUMO

CONTEXT: Abnormal serum calcium concentrations affect the heart and may alter the electrocardiogram (ECG), but the detection of hypocalcemia and hypercalcemia (collectively dyscalcemia) relies on blood laboratory tests requiring turnaround time. OBJECTIVE: The study aimed to develop a bloodless artificial intelligence (AI)-enabled (ECG) method to rapidly detect dyscalcemia and analyze its possible utility for outcome prediction. METHODS: This study collected 86,731 development, 15,611 tuning, 11,105 internal validation, and 8401 external validation ECGs from electronic medical records with at least 1 ECG associated with an albumin-adjusted calcium (aCa) value within 4 h. The main outcomes were to assess the accuracy of AI-ECG to predict aCa and follow up these patients for all-cause mortality, new-onset acute myocardial infraction (AMI), and new-onset heart failure (HF) to validate the ability of AI-ECG-aCa for previvor identification. RESULTS: ECG-aCa had mean absolute errors (MAE) of 0.78/0.98 mg/dL and achieved an area under receiver operating characteristic curves (AUCs) 0.9219/0.8447 and 0.8948/0.7723 to detect severe hypercalcemia and hypocalcemia in the internal/external validation sets, respectively. Although < 20 % variance of ECG-aCa could be explained by traditional ECG features, the ECG-aCa was found to be associated with more complications. Patients with ECG-hypercalcemia but initially normal aCa were found to have a higher risk of subsequent all-cause mortality [hazard ratio (HR): 2.05, 95 % conference interval (CI): 1.55-2.70], new-onset AMI (HR: 2.88, 95 % CI: 1.72-4.83), and new-onset HF (HR: 2.02, 95 % CI: 1.38-2.97) in the internal validation set, which were also seen in external validation. CONCLUSION: The AI-ECG-aCa may help detecting severe dyscalcemia for early diagnosis and ECG-hypercalcemia also has prognostic value for clinical outcomes (all-cause mortality and new-onset AMI and HF).


Assuntos
Insuficiência Cardíaca , Hipercalcemia , Hipocalcemia , Albuminas , Inteligência Artificial , Cálcio , Eletrocardiografia , Insuficiência Cardíaca/diagnóstico , Humanos , Hipocalcemia/diagnóstico , Prognóstico
12.
Front Cardiovasc Med ; 9: 895201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770216

RESUMO

Background: Albumin, an important component of fluid balance, is associated with kidney, liver, nutritional, and cardiovascular diseases (CVD) and is measured by blood tests. Since fluid balance is associated with electrocardiography (ECG) changes, we established a deep learning model (DLM) to estimate albumin via ECG. Objective: This study aimed to develop a DLM to estimate albumin via ECG and explored its contribution to future complications. Materials and Methods: A DLM was trained for estimating ECG-based albumin (ECG-Alb) using 155,078 ECGs corresponding to albumin from 79,111 patients, and another independent 13,335 patients from an academic medical center and 11,370 patients from a community hospital were used for internal and external validation. The primary analysis focused on distinguishing patients with mild to severe hypoalbuminemia, and the secondary analysis aimed to provide additional prognostic value from ECG-Alb for future complications, which included mortality, new-onset hypoalbuminemia, chronic kidney disease (CKD), new onset hepatitis, CVD mortality, new-onset acute myocardial infarction (AMI), new-onset stroke (STK), new-onset coronary artery disease (CAD), new-onset heart failure (HF), and new-onset atrial fibrillation (Afib). Results: The AUC to identify hypoalbuminemia was 0.8771 with a sensitivity of 56.0% and a specificity of 90.7% in the internal validation set, and the Pearson correlation coefficient was 0.69 in the continuous analysis. The most important ECG features contributing to ECG-Alb were ordered in terms of heart rate, corrected QT interval, T wave axis, sinus rhythm, P wave axis, etc. The group with severely low ECG-Alb had a higher risk of all-cause mortality [hazard ratio (HR): 2.45, 95% CI: 1.81-3.33] and the other hepatorenal and cardiovascular events in the internal validation set. The external validation set yielded similar results. Conclusion: Hypoalbuminemia and its complications can be predicted using ECG-Alb as a novel biomarker, which may be a non-invasive tool to warn asymptomatic patients.

13.
J Pers Med ; 12(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35629122

RESUMO

The machine learning-assisted electrocardiogram (ECG) is increasingly recognized for its unprecedented capabilities in diagnosing and predicting cardiovascular diseases. Identifying the need for ECG examination early in emergency department (ED) triage is key to timely artificial intelligence-assisted analysis. We used machine learning to develop and validate a clinical decision support tool to predict ED triage patients' need for ECG. Data from 301,658 ED visits from August 2017 to November 2020 in a tertiary hospital were divided into a development cohort, validation cohort, and two test cohorts that included admissions before and during the COVID-19 pandemic. Models were developed using logistic regression, decision tree, random forest, and XGBoost methods. Their areas under the receiver operating characteristic curves (AUCs), positive predictive values (PPVs), and negative predictive values (NPVs) were compared and validated. In the validation cohort, the AUCs were 0.887 for the XGBoost model, 0.885 for the logistic regression model, 0.878 for the random forest model, and 0.845 for the decision tree model. The XGBoost model was selected for subsequent application. In test cohort 1, the AUC was 0.891, with sensitivity of 0.812, specificity of 0.814, PPV of 0.708 and NPV of 0.886. In test cohort 2, the AUC was 0.885, with sensitivity of 0.816, specificity of 0.812, PPV of 0.659, and NPV of 0.908. In the cumulative incidence analysis, patients not receiving an ECG yet positively predicted by the model had significantly higher probability of receiving the examination within 48 h compared with those negatively predicted by the model. A machine learning model based on triage datasets was developed to predict ECG acquisition with high accuracy. The ECG recommendation can effectively predict whether patients presenting at ED triage will require an ECG, prompting subsequent analysis and decision-making in the ED.

14.
Front Med (Lausanne) ; 9: 870523, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479951

RESUMO

Background: Heart failure (HF) is a global disease with increasing prevalence in an aging society. However, the survival rate is poor despite the patient receiving standard treatment. Early identification of patients with a high risk of HF is important but challenging. Left ventricular end-diastolic diameter (LV-D) increase was an independent risk factor of HF and adverse cardiovascular (CV) outcomes. In this study, we aimed to develop an artificial intelligence (AI) enabled electrocardiogram (ECG) system to detect LV-D increase early. Objective: We developed a deep learning model (DLM) to predict left ventricular end-diastolic and end-systolic diameter (LV-D and LV-S) with internal and external validations and investigated the relationship between ECG-LV-D and echocardiographic LV-D and explored the contributions of ECG-LV-D on future CV outcomes. Methods: Electrocardiograms and corresponding echocardiography data within 7 days were collected and paired for DLM training with 99,692 ECGs in the development set and 20,197 ECGs in the tuning set. The other 7,551 and 11,644 ECGs were collected from two different hospitals to validate the DLM performance in internal and external validation sets. We analyzed the association and prediction ability of ECG-LVD for CV outcomes, including left ventricular (LV) dysfunction, CV mortality, acute myocardial infarction (AMI), and coronary artery disease (CAD). Results: The mean absolute errors (MAE) of ECG-LV-D were 5.25/5.29, and the area under the receiver operating characteristic (ROC) curves (AUCs) were 0.8297/0.8072 and 0.9295/0.9148 for the detection of mild (56 ≦ LV-D < 65 mm) and severe (LV-D ≧ 65 mm) LV-D dilation in internal/external validation sets, respectively. Patients with normal ejection fraction (EF) who were identified as high ECHO-LV-D had the higher hazard ratios (HRs) of developing new onset LV dysfunction [HR: 2.34, 95% conference interval (CI): 1.78-3.08], CV mortality (HR 2.30, 95% CI 1.05-5.05), new-onset AMI (HR 2.12, 95% CI 1.36-3.29), and CAD (HR 1.59, 95% CI 1.26-2.00) in the internal validation set. In addition, the ECG-LV-D presents a 1.88-fold risk (95% CI 1.47-2.39) on new-onset LV dysfunction in the external validation set. Conclusion: The ECG-LV-D not only identifies high-risk patients with normal EF but also serves as an independent risk factor of long-term CV outcomes.

15.
J Pers Med ; 12(3)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35330455

RESUMO

BACKGROUND: The ejection fraction (EF) provides critical information about heart failure (HF) and its management. Electrocardiography (ECG) is a noninvasive screening tool for cardiac electrophysiological activities that has been used to detect patients with low EF based on a deep learning model (DLM) trained via large amounts of data. However, no studies have widely investigated its clinical impacts. OBJECTIVE: This study developed a DLM to estimate EF via ECG (ECG-EF). We further investigated the relationship between ECG-EF and echo-based EF (ECHO-EF) and explored their contributions to future cardiovascular adverse events. METHODS: There were 57,206 ECGs with corresponding echocardiograms used to train our DLM. We compared a series of training strategies and selected the best DLM. The architecture of the DLM was based on ECG12Net, developed previously. Next, 10,762 ECGs were used for validation, and another 20,629 ECGs were employed to conduct the accuracy test. The changes between ECG-EF and ECHO-EF were evaluated. The primary follow-up adverse events included future ECHO-EF changes and major adverse cardiovascular events (MACEs). RESULTS: The sex-/age-matching strategy-trained DLM achieved the best area under the curve (AUC) of 0.9472 with a sensitivity of 86.9% and specificity of 89.6% in the follow-up cohort, with a correlation of 0.603 and a mean absolute error of 7.436. In patients with accurate prediction (initial difference < 10%), the change traces of ECG-EF and ECHO-EF were more consistent (R-square = 0.351) than in all patients (R-square = 0.115). Patients with lower ECG-EF (≤35%) exhibited a greater risk of cardiovascular (CV) complications, delayed ECHO-EF recovery, and earlier ECHO-EF deterioration than patients with normal ECG-EF (>50%). Importantly, ECG-EF demonstrated an independent impact on MACEs and all CV adverse outcomes, with better prediction of CV outcomes than ECHO-EF. CONCLUSIONS: The ECG-EF could be used to initially screen asymptomatic left ventricular dysfunction (LVD) and it could also independently contribute to the predictions of future CV adverse events. Although further large-scale studies are warranted, DLM-based ECG-EF could serve as a promising diagnostic supportive and management-guided tool for CV disease prediction and the care of patients with LVD.

16.
JMIR Serious Games ; 10(1): e35040, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35315780

RESUMO

BACKGROUND: The COVID-19 outbreak has not only changed the lifestyles of people globally but has also resulted in other challenges, such as the requirement of self-isolation and distance learning. Moreover, people are unable to venture out to exercise, leading to reduced movement, and therefore, the demand for exercise at home has increased. OBJECTIVE: We intended to investigate the relationships between a Nintendo Ring Fit Adventure (RFA) intervention and improvements in running time, cardiac force index (CFI), sleep quality (Chinese version of the Pittsburgh Sleep Quality Index score), and mood disorders (5-item Brief Symptom Rating Scale score). METHODS: This was a randomized prospective study and included 80 students who were required to complete a 1600-meter outdoor run before and after the intervention, the completion times of which were recorded in seconds. They were also required to fill out a lifestyle questionnaire. During the study, 40 participants (16 males and 24 females, with an average age of 23.75 years) were assigned to the RFA group and were required to exercise for 30 minutes 3 times per week (in the adventure mode) over 4 weeks. The exercise intensity was set according to the instructions given by the virtual coach during the first game. The remaining 40 participants (30 males and 10 females, with an average age of 22.65 years) were assigned to the control group and maintained their regular habits during the study period. RESULTS: The study was completed by 80 participants aged 20 to 36 years (mean 23.20, SD 2.96 years). The results showed that the running time in the RFA group was significantly reduced. After 4 weeks of physical training, it took females in the RFA group 19.79 seconds (P=.03) and males 22.56 seconds (P=.03) less than the baseline to complete the 1600-meter run. In contrast, there were no significant differences in the performance of the control group in the run before and after the fourth week of intervention. In terms of mood disorders, the average score of the RFA group increased from 1.81 to 3.31 for males (difference=1.50, P=.04) and from 3.17 to 4.54 for females (difference=1.38, P=.06). In addition, no significant differences between the RFA and control groups were observed for the CFI peak acceleration (CFIPA)_walk, CFIPA_run, or sleep quality. CONCLUSIONS: RFA could either maintain or improve an individual's physical fitness, thereby providing a good solution for people involved in distance learning or those who have not exercised for an extended period. TRIAL REGISTRATION: ClinicalTrials.gov NCT05227040; https://clinicaltrials.gov/ct2/show/NCT05227040.

17.
Eur J Trauma Emerg Surg ; 48(4): 3317-3326, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35166869

RESUMO

PURPOSE: To determine if an electrocardiogram-based artificial intelligence system can identify pneumothorax prior to radiological examination. METHODS: This is a single-center, retrospective, electrocardiogram-based artificial intelligence (AI) system study that included 107 ECGs from 98 pneumothorax patients. Seven patients received needle decompression due to tension pneumothorax, and the others received thoracostomy due to instability (respiratory rate ≥ 24 breaths/min; heart rate, < 60 beats/min or > 120 beats/min; hypotension; room air O2 saturation, < 90%; and patient could not speak in whole sentences between breaths). Traumatic pneumothorax and bilateral pneumothorax were excluded. The ECGs of 132,127 patients presenting to the emergency department without pneumothorax were used as the control group. The development cohort included approximately 80% of the ECGs for training the deep learning model (DLM), and the other 20% of ECGs were used to validate the performance. A human-machine competition involving three physicians was conducted to assess the model performance. RESULTS: The areas under the receiver operating characteristic (ROC) curves (AUCs) of the DLM in the validation cohort and competition set were 0.947 and 0.957, respectively. The sensitivity and specificity of our DLM were 94.7% and 88.1% in the validation cohort, respectively, which were significantly higher than those of all physicians. Our DLM could also recognize the location of pneumothorax with 100% accuracy. Lead-specific analysis showed that lead I ECG made a major contribution, achieving an AUC of 0.930 (94.7% sensitivity, 86.0% specificity). The inclusion of the patient characteristics allowed our AI system to achieve an AUC of 0.994. CONCLUSION: The present AI system may assist the medical system in the early identification of pneumothorax through 12-lead ECG, and it performs as well with lead I ECG alone as with 12-lead ECG.


Assuntos
Aprendizado Profundo , Pneumotórax , Inteligência Artificial , Eletrocardiografia , Humanos , Pneumotórax/diagnóstico por imagem , Estudos Retrospectivos
18.
J Pers Med ; 12(2)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35207802

RESUMO

BACKGROUND: Left atrium enlargement (LAE) can be used as a predictor of future cardiovascular diseases, including hypertension (HTN) and atrial fibrillation (Afib). Typical electrocardiogram (ECG) changes have been reported in patients with LAE. This study developed a deep learning model (DLM)-enabled ECG system to identify patients with LAE. METHOD: Patients who had ECG records with corresponding echocardiography (ECHO) were included. There were 101,077 ECGs, 20,510 ECGs, 7611 ECGs, and 11,753 ECGs in the development, tuning, internal validation, and external validation sets, respectively. We evaluated the performance of a DLM-enabled ECG for diagnosing LAE and explored the prognostic value of ECG-LAE for new-onset HTN, new-onset stroke (STK), new-onset mitral regurgitation (MR), and new-onset Afib. RESULTS: The DLM-enabled ECG achieved AUCs of 0.8127/0.8176 for diagnosing mild LAE, 0.8587/0.8688 for diagnosing moderate LAE, and 0.8899/0.8990 for diagnosing severe LAE in the internal/external validation sets. Notably, ECG-LAE had higher prognostic value compared to ECHO-LAE, which had C-indices of 0.711/0.714 compared to 0.695/0.692 for new-onset HTN, 0.676/0.688 compared to 0.663/0.677 for new-onset STK, 0.696/0.695 compared to 0.676/0.673 for new-onset MR, and 0.800/0.806 compared to 0.786/0.760 for new-onset Afib in internal/external validation sets, respectively. CONCLUSIONS: A DLM-enabled ECG could be considered as a LAE screening tool and provide better prognostic information for related cardiovascular diseases.

19.
Can J Cardiol ; 38(6): 763-773, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35007705

RESUMO

BACKGROUND: Assessment of left ventricular systolic dysfunction provides essential information related to the prognosis and management of cardiovascular diseases. The aim of this study was to develop a deep-learning model to identify left ventricular ejection fraction (LVEF) ≤ 35% via chest X-ray (CXR [CXR-EF≤35%]) features and investigate the performance and clinical implications. METHODS: This study collected 90,547 CXRs with the corresponding LVEF according to transthoracic echocardiography from the outpatient department in an academic medical center. Among these, 77,227 CXRs were used to develop the identification of CXR-EF≤35%. Another 13,320 CXRs were used to validate the performance, which was evaluated by area under the receiver operating characteristic curve (AUC). Furthermore, CXR-EF≤35% was tested to assess the long-term risks of developing LVEF ≤ 35% and cardiovascular outcomes, which were evaluated by Kaplan-Meier survival analysis and the Cox proportional hazards model. RESULTS: The AUCs of CXR-EF≤35% for the detection of LVEF ≤ 35% were 0.888 and 0.867 in the internal and external validation cohorts, respectively. Patients with baseline LVEF > 50% but detected as CXR-EF≤35% were at higher risk of long-term development of LVEF ≤ 35% (hazard ratio, internal validation cohort [HRi] 3.91, 95% CI 2.98-5.14; hazard ratio, external validation cohort [HRe] 2.49, 95% CI 1.89-3.27). Furthermore, patients detected as LVEF ≤ 35% by CXR-EF≤35% had significantly higher future risks of all-cause mortality (HRi 1.40, 95% CI 1.15-1.71; HRe 1.38, 95% CI 1.15-1.66), cardiovascular mortality (HRi 3.02, 95% CI 1.84-4.98; HRe 2.60, 95% CI 1.77-3.82), and new-onset atrial fibrillation (HRi 2.81, 95% CI 2.15-3.66; HRe 2.93, 95% CI 2.34-3.67) compared with those detected as no LVEF ≤ 35%. CONCLUSIONS: CXR-EF≤35% may serve as a screening tool for early detection of LVEF ≤ 35% and could independently contribute to predictions of long-term development of LVEF ≤ 35% and cardiovascular outcomes. Further prospective studies are needed to confirm the model performance.


Assuntos
Disfunção Ventricular Esquerda , Função Ventricular Esquerda , Inteligência Artificial , Humanos , Prognóstico , Volume Sistólico , Disfunção Ventricular Esquerda/diagnóstico por imagem , Raios X
20.
NPJ Digit Med ; 5(1): 8, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046489

RESUMO

Dyskalemias are common electrolyte disorders associated with high cardiovascular risk. Artificial intelligence (AI)-assisted electrocardiography (ECG) has been evaluated as an early-detection approach for dyskalemia. The aims of this study were to determine the clinical accuracy of AI-assisted ECG for dyskalemia and prognostic ability on clinical outcomes such as all-cause mortality, hospitalizations, and ED revisits. This retrospective cohort study was done at two hospitals within a health system from May 2019 to December 2020. In total, 26,499 patients with 34,803 emergency department (ED) visits to an academic medical center and 6492 ED visits from 4747 patients to a community hospital who had a 12-lead ECG to estimate ECG-K+ and serum laboratory potassium measurement (Lab-K+) within 1 h were included. ECG-K+ had mean absolute errors (MAEs) of ≤0.365 mmol/L. Area under receiver operating characteristic curves for ECG-K+ to predict moderate-to-severe hypokalemia (Lab-K+ ≤3 mmol/L) and moderate-to-severe hyperkalemia (Lab-K+ ≥ 6 mmol/L) were >0.85 and >0.95, respectively. The U-shaped relationships between K+ concentration and adverse outcomes were more prominent for ECG-K+ than for Lab-K+. ECG-K+ and Lab-K+ hyperkalemia were associated with high HRs for 30-day all-cause mortality. Compared to hypokalemic Lab-K+, patients with hypokalemic ECG-K+ had significantly higher risk for adverse outcomes after full confounder adjustment. In addition, patients with normal Lab-K+ but dyskalemic ECG-K+ (pseudo-positive) also exhibited more co-morbidities and had worse outcomes. Point-of-care bloodless AI ECG-K+ not only rapidly identified potentially severe hypo- and hyperkalemia, but also may serve as a biomarker for medical complexity and an independent predictor for adverse outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...